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Reforestation is a potentially large-scale approach for removing CO2 from the 
atmosphere, thereby helping China achieve its goal of carbon neutrality by 2060. 
Although China has set ambitious national targets, the cost of mitigating climate 
change through reforestation has yet to be identified across space and time over 
the next 40  years. We construct spatially disaggregated marginal abatement cost 
curves for reforestation by modeling the effects of compensation for enhanced 
CO2 removals on reforestation. We project that carbon prices (compensation) of 
US$20 tCO2

−1 and US$50 tCO2
−1 would motivate land users in China to enhance 

reforestation by 3.35 Mha (2.65%) and 8.53 Mha (6.74%) respectively from 2020 
to 2060 relative to the business-as-usual (BAU) scenario (127 Mha). Carbon 
dioxide removals through reforestation between 2020 and 2060 in China would 
be enhanced by 0.0124 GtCO2/yr (1.7%) at US$20  tCO2

−1 or 0.0315 GtCO2/yr (4.3%) 
at US$50  tCO2

−1, relative to the BAU scenario (0.740 GtCO2/yr). The cost potential 
of carbon dioxide removal demonstrates significant spatial heterogeneity. The 
top  10 provinces (Yunnan, Sichuan, Guangxi, Guizhou, Hunan, Guangdong, 
Heilongjiang, Jiangxi, Fujian, and Zhejiang), which comprise 73.19% of low-cost 
abatement potential, should be identified as priority areas for reforestation. Our 
results confirm the vast potential for low-cost CO2 removal through reforestation 
to address China’s carbon neutrality challenges while underscoring that targeting 
reforestation to regions with the greatest potential for low-cost CO2 removal 
would significantly reduce the cost burden.
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Highlights

 - Reforestation is responsive to price incentives, in contrast to stereotypes about state-
owned land.

 - Marginal abatement cost reveals great potential for CO2 removal through 
China’s reforestation.

 - Targeting reforestation policies to regions with the greatest potential for low-cost 
CO2 removal.
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1 Introduction

Reforestation is a potentially large-scale approach for removing 
CO2 from the atmosphere, with great potential for mitigating climate 
change (Hawes, 2018; Mitchard, 2018), thereby helping China achieve 
its goal of carbon neutrality by 2060. China has been a leader to date 
in reforesting large areas (Chen et al., 2019; Li et al., 2020; Piao et al., 
2020). Over the past 30 years, China has undertaken a series of large-
scale reforestation projects, investing hundreds of billions of dollars 
(Zhang et al., 2000; Wang et al., 2020; Winkler et al., 2021; Xi et al., 
2022). These programs include the Natural Forest Conservation 
Program (NFCP), the Sloping Land Conversion Program (SLCP), 
Three-North Shelter Forest Program (TSFP), National Key Ecological 
Function Area Program (NKEFA), Chinese Certified Emission 
Reduction (CCER), etc. As a result, more than 69.3 million hectares 
of forest were planted in China from 1999 to 2013. Due in part to 
large-scale reforestation, China’s forests sequestered 1.11 ± 0.38 GtC 
yr−1 during 2010 to 2016, approximately 45 percent of annual 
greenhouse gas emissions over that period in China (Wang et al., 
2020). China’s vast land area and conducive climatic conditions offer 
great potential opportunities for further reforestation (Xi et al., 2022).

The cost of removing CO2 through reforestation is a key part of 
the success of these programs, whether through government 
leadership or incentives for private individuals. For government-led 
large-scale reforestation programs, the cost of CO2 removal from 
reforestation tells policymakers where the most carbon removal can 
be achieved at the lowest cost, which will help policymakers to identify 
reforestation priority areas and improve the effectiveness of 
reforestation projects (Strassburg et  al., 2020). For a carbon price 
mechanism, knowing the price salience can help anticipate how high 
a carbon price is needed to achieve a certain level of mitigation 
(Griscom et al., 1794).

Marginal abatement cost (MAC) curves illustrate how much CO2 
could be removed through reforestation at various costs-per-tonne at 
particular places and times (Kesicki and Strachan, 2011). They can 
help policymakers prioritize the most cost-effective actions across 
sectors and regions for achieving carbon neutrality in the middle of 
the 21st century. However, there is a lack of MAC curves for large-
scale government-led reforestation projects in China.

Previous global studies have developed analytical framework to 
determine the costs of carbon sequestration in reforestation programs 
(Stavins, 1999; Sohngen and Mendelsohn, 2003; Sathaye et al., 2006; 
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Tavoni et al., 2007; Austin et al., 2020; Favero et al., 2020). One study 
(Busch et al., 2019) estimated cost and price salience for the tropics, 
producing a tropics-wide MAC curve for reforestation. However, this 
study did not produce a MAC curve for China. This is an important 
gap, given China’s large potential for mitigating climate change 
through reforestation.

There are several reasons why the tropics-wide MAC curve may 
not apply to China. First, the ecology and climate (such as precipitation 
and temperature) of China, which varies markedly across regions, is 
different from that of the tropics. Second, all land is owned by the state 
in China, with land management rights possessed by enterprises, 
farmers, foresters and forest farms (Yan, 2019; Tong et al., 2020; Feng 
et al., 2021). This is different from the economic system of most other 
countries (Chow, 1997; Piao et al., 2020). Some studies speculated that 
reforestation projects on public land, for example in China and India, 
might not be as responsive to price signals (Busch et al., 2019). Many 
researchers argue that government-led reforestation policies do not 
usually respond to cost/price signals, which constrains the replication 
of cost/price studies in China (Wang et al., 2018; Wu et al., 2018; Feng 
et al., 2021; Yang et al., 2021). However, China has been reforming the 
governance of forests from government control to private control for 
decades (e.g., northern forests are managed by enterprises, and 
southern forests are contracted to individuals), and has introduced 
market mechanisms (Wang et al., 2004; Huang, 2019; Hyde, 2019). 
However, this reform has not been completed and is still ongoing. 
Thus, reforestation in China remains a half-market and half-
government-led process, which is different from the tropics. So, we are 
motivated to undertake the current study to fill these gaps.

To estimate the cost potential for CO2 removal and priority areas 
through reforestation in China, here we  construct spatially 
disaggregated MAC curves for reforestation. We take advantage of 
geographic and satellite data. We estimate the effect of agricultural 
price on land-cover and use this to simulate the effects of carbon price 
on land-cover. Our estimates of the economic potential depend on the 
assumption that land users would respond to carbon prices just as 
they have responded to historical agricultural prices. These estimates 
assume that external environments such as socio-economic 
development remain relatively stable, with no sudden fluctuations 
such as socio-economic crises. We geographically disaggregate CO2 
removal cost of reforestation, identifying regions and provinces with 
the greatest low-cost potential.

2 Methods and data

We estimated MAC curves for CO2 removal through China 
reforestation by applying the top-down approach (Busch et al., 2019). 
Government-led large-scale reforestation projects, commercial timber 
plantations, and the Sloping Land Conversion Program have been 
driving widespread forest cover enhancement. In addition to 
reforestation in commercial timber plantations and the Sloping Land 
Conversion Program being driven by economic forces, limited 
government investment forced managers of Government-led projects 
to incorporate cost considerations. Therefore, referring to Busch’s 
study (Busch et  al., 2019), the approach assumes that carbon 
sequestration by reforestation is partly a response of human behavior 
to economic forces. We constructed a model to estimate the aggregate 
response of decision-makers of reforestation to a variable carbon 

price. We modified the forest cover change model based on Chinese 
realities to capture the reforestation response to agricultural revenue. 
Moreover, other socio-ecological determinants were controlled for in 
this model.

The main dependent variable in the forest cover change model, 
reforestation, was derived from forest cover data from 2000 to 2010, 
the most recent year (2010) for which this data was available. 
Moreover, we classified land with more than 30% tree-cover threshold 
as forest (Busch and Engelmann, 2017; Busch et  al., 2019). All 
conversion from non-forest to forest was defined as ‘reforestation,’ 
while the opposite land-use transition was defined as ‘deforestation.’ 
‘Afforestation’ can imply the intentional conversion of native 
non-forest ecosystems to exotic tree cover and violate biodiversity 
safeguards (Veldman et al., 2015). Therefore, we choose to refrain 
from using this term. The primary independent variable in the forest 
cover change model, potential agricultural revenue, was derived from 
potential yields of 21 crops and farmgate prices for major countries. 
The potential agricultural revenue was constructed as the maximum 
value by multiplying the weighted average national farmgate prices of 
the top five producing countries of each crop and the potential yields 
of the 21 crops, for the priod of 2000–2010 (Naidoo and Iwamura, 
2007; Busch and Engelmann, 2017; Busch et al., 2019).

We assumed agricultural revenues are discounted at 10% annually, 
which is widely adopted in decision-making in developing countries 
(Busch and Engelmann, 2017; Busch et al., 2019). Our forest cover 
change model incorporates control variables [biome type (Dinerstein 
et al., 2017), elevation (Chinese Academy of Sciences, 2020), slope 
(Chinese Academy of Sciences, 2020), protected areas (IUCN and 
UNEP-WCMC, 2020), and distance from the nearest city (Xu, 2023)], 
that have been widely proven to affect forest cover (Busch and Ferretti-
Gallon, 2017; Dinerstein et  al., 2017). Based on previous studies 
(Busch et al., 2019), we included a fourth-order polynomial of forest 
cover as a control variable. After we  excluded variables with 
multicollinearity problems, the remaining variables were adopted as 
control variables (Supplementary Table 3). Considering that we were 
first and foremost trying to estimate the parameter of the effect of 
changes in prices on changes in land cover, we used a regression rather 
than a machine method.

We aggregated all data into 0.05° [approximately 5.5 × 5.5 km2] 
grid cells following Naidoo et  al. (Busch and Engelmann, 2017). 
We limited the scope to China, which contained 388,832 grid cells. 
Grid cells with zero forest cover in both 2000 and 2010 were excluded, 
under the assumption that natural conditions for reforestation were 
not present on these lands. In addition, due to the lack of data from 
Taiwan, Hong Kong and Macao, the corresponding grid cells were 
not considered. After exclusion, the dataset contained 179,484 grid 
cells in 31 provincial administrative regions. The regression 
model was:

 
R AR X Fi i i= + + + + + +( )exp ' 'α α α α0 1 2 3

r r r r
i i

r
i
r

i
rη λ ε

 
(1)

in which Ri is the fraction of non-forest to forest transition in cell 
i from 2000 to 2010. Independent variables contain the net present 
value (NPV) of future agricultural revenue (ARi); a vector (Xi) of 
elevation, slope, protected areas, and distance from the nearest 
prefecture-level city; and a fourth-order polynomial of forest cover 
(Fi). Given the differences in social and ecological climate between 
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Eastern Economic Belt (EEB), Central Economic Belt (CEB), and 
Western Economic Belt (WEB), regions (ηi) were analyzed using fixed 
effects. The λi stands for biome type. The superscript r stands for 
reforestation. α are the regression coefficients, εi is the error term.

 
D AR X Fi i i= + + + + + +( )exp ' 'α α α α0 1 2 3

d d d d
i i

d
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(2)

in which Di is the fraction of forest to non-forest transition in cell 
i from 2000 to 2010. The superscript d stands for deforestation. 
We used a recursive model in order to predict reforestation under a 
business-as-usual scenario (BAU) for 2020–2060, through the 
recursive change of forest cover (Fi,t) per decade (t: a time step of 
10 years). For each t in 2010–2060, we estimated reforestation and 
deforestation based on equations (1) and (2); that is:
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Most attributes (biome type, elevation, slope, protected areas, 
distance from the nearest city, continent, agricultural revenue) in the 
grid remain stable in the model. Moreover, we assumed that future 
agricultural revenue would remain stable, as suggested by OECD 
(2013). We assumed that other unmodelled socio-ecological factors 
will remain unchanged as well. Unlike other grid attributes, 
we dynamically updated the forest cover. In other words, we estimated 
forest cover by adding reforestation and subtracting deforestation to 
forest cover at the beginning of the period. Moreover, we constrained 
the forest cover to be no more than 1 and less than 0.

In order to construct CO2 removal trajectories, we revised a time-
dependent CO2 removal model, based on 2,556 samples of secondary 
forest biomass (stands’ location, age, and secondary type) in China 
(Anderson-Teixeira et al., 2021). We established above-ground carbon 
stocks as a function of the stand age (SAx) as suggested in Busch et al. 
(2019), using the formula:

 
C SA FT BTX
AB

X x x= + +( ) +α α α1 2 3
c c c

x
cε

 
(6)

The variable, FTx, is a binary variable for forest type (plantation or 
natural regrowth). The BTx is also a binary variable for three forest 
biome types (tropical and subtropical humid forests, temperate 
continental forests, temperate grasslands). The superscript c stands for 
carbon. Moreover, we extrapolated our model across China, that is: 
how much above-ground carbon (tC ha−1) would be stored in cell, i, 
as forest type n, after y years:

 

C SA FT BTiyn
AB

i i
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(7)

We assumed that future carbon accumulation rates would 
be consistent with historical rates. We estimated belowground biomass 
carbon (C BB

iyn ) based on the root-stem ratio of 0.26 to aboveground 
biomass (Mokany et al., 2006). Since large-scale plantation projects 
such as the Sloping Land Conversion Program (SLCP), Three-North 
Shelter Forest Program (TSFP), National Key Ecological Function 
Area Program (NKEFA), and Chinese Certified Emission Reduction 
(CCER) are aimed at ecological restoration (Zhang et al., 2000; Wang 
et  al., 2020; Winkler et  al., 2021), we  assumed that there was no 
operational deforestation of plantation forests. Moreover, Since the 
Chinese government has formulated the Natural Forest Conservation 
Program (NFCP) (Xi et  al., 2022), we  assumed that natural 
reforestation will not be felled.

After the transition to natural forests, the average annual carbon 
increment (C S

iyn
) was equivalent to 0.447% of the pre-transition soil 

carbon (Nachtergaele et al., 2023) as suggested in Busch et al. (2019). 
After the transition to plantation, the average annual carbon increment 
(C S

iyn
) was equivalent to 0.919% of pre-transition soil carbon 

(Nachtergaele et al., 2023) as suggested in Busch et al. (2019).
The total forest carbon stock of cell i as forest type n in decade t 

(C T
itn

) is the average carbon stock in that 10-year period, containing 
aboveground biomass carbon, belowground biomass carbon, and 
soil carbon:

 

C C C CT
y t
t AB BB S   

itn iyn iyn iyn
= + +

= −( )
−∑1

10 10 1

10 1

 
(8)

The carbon stock accumulation of cell i as forest type n (plantation 
or natural regrowth) in decade t = 1, 2, 3…… is equal to C T

i n1,
,C CT T 

i n i n2 1, ,
− , C C

T T




i n i n3 2, ,
− , and so on. We next estimated the CO2 

removals factor of plantations (CRFit, plantation) and natural regrowth 
(CRFit, natural) in cell i as forest type n (plantation and natural regrowth) 
in decade t, by multiplying the carbon stock accumulation by 3.67 (the 
atomic mass conversion ratio of carbon to CO2). To reflect the effect 
of the share of natural regrowth and plantation, our estimated CRFit,m 
varied by province (National Science and Technology Infrastructure 
of China, 2023).

 CRF CRF CRFitm m it natural m it plantation= + −( )α α, ,1  (9)

in which CRFitm is the CO2 removals factor per hectare in cell i, in 
decade t, in province m. αm is the share of natural regrowth in the 
secondary forest in province m.

Under a business-as-usual scenario (BAU), we multiplied the CO2 
removal factor (CRFitm) by area of reforestation in 2010–2020 in order 
to estimate the removal of reforestation in the first decade of grid i 
(RDi1). Moreover, we  multiplied area of reforestation in previous 
decades by the CO2 removal factor (CRFitm) in decade t to calculate 
removals associated with subsequent decades following reforestation 
at grid i (RDit).
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To estimate the marginal abatement cost curves, we adjusted the 
BAU pace of reforestation by imposing a carbon price incentive (ITi) 
to equation (3). A carbon price increased the return on land from 
standing forests compared to agriculture, thereby increasing expected 
reforestation. Moreover, we assumed that the manager of the land 
would respond equally to carbon revenue and agricultural revenue 
[notably, carbon revenue is the opportunity cost of agricultural land 
usage, and thusly is subtracted from agricultural revenue in the 
regression model of reforestation equation (1)]; that is:

 

R AR IT X Fi i i i i i


    

= + −( ) + + + +











exp ' 'α α α α
0 1 2 3
r r r r

i
r rη λ


 
(10)

We assumed that land managers would be paid annually under 
any carbon compensation mechanism, not up front for reforestation 
in future decades. The incentive effect of a carbon price (ITi) is equal 
to the net present value of the product of the carbon removal from 
reforestation and the carbon price (P).

 
IT p CRF

y
i y

y
i = ∂

=

∗∑
1

30

,

 
(11)

in which the CRFi,y stands for CO2 removal factor at year y of grid 
i. We adopted the discount rate (∂ y) of 10% for investment decisions 
of development banks. We assumed that the payment term of the 
carbon compensation mechanism is 30 years (Busch and Engelmann, 
2017; Busch et al., 2019). We assumed there is no carbon leakage. 
We carved out the marginal abatement cost curve by estimating the 
increased CO2 removal associated with carbon prices. We estimated 
increasing removals from reforestation (IRR) by price specific 
removals (RDit,p) minus removals (RDit,BAU) under a business-as-
usual scenario:

 IRR RD RDit p it p it BAU, , ,= −  (12)

Notably, a relative comparison between our estimates and those 
in reference (Busch et al., 2019) was used for calibration, according to 
the methodology of Lu et al. (2022). Because both China (this study) 
and tropical studies (Busch et  al., 2019) cover Hainan Province, 
carbon removal data from 1,261 grids in Hainan Province were 
selected. Based on 1,261 gridded data, we  implemented a relative 
comparison of our estimates to the reference (Busch et al., 2019) for 
calibrating our estimates.

Finally, we further validated our estimates on both spatial and 
temporal scales. The Kling-Gupta efficiency (KGE), widely used for 
model validation, was estimated by following equation:

 
KGE u y

y z
sim

re

sim

re
= − −( ) + −









 + −









1 1 1 1

2
2 2

z

 
(13)

in which u stands for correlation coefficient between reference 
estimate and simulations. Moreover, this equation contains the 
standard deviation of reference estimate (yre), the standard deviation 
of simulations (ysim), the simulation mean (Zsim), and the mean of 

reference estimate (Zre). (1) Cross-spatial (carbon removal through 
reforestation across a spatial extent of 179,484 grids) validation of 
carbon removals. Given the lack of forest cover data for 2020, 
we calculated carbon removal through reforestation based on land use 
data (Potapov et al., 2022) in 2010–2020. Based on carbon removal 
through reforestation (179,484 grids of spatial extent) estimated by 
land-use data (2010–2020) (Potapov et al., 2022), the Kling-Gupta 
efficiency was calculated to validate our projections (carbon removal 
through reforestation projected for 2010–2020 based on tree cover 
data) using equation (13). (2) Cross-temporal (2035, 2055) validation 
of carbon removals. The cross-temporal (2035, 2055) validation was 
designed to assess the reliability of the time series for our projected 
carbon removals. The Kling-Gupta efficiency was used for validation 
of cross-temporal carbon removal using equation (13) in 2035 and 
2055 separately, based on the overall data for China in the global 
estimates in reference (Austin et al., 2020).

3 Results

3.1 Determinants and price salience of 
reforestation in China

Determinants of reforestation from 2000 to 2010 were mostly 
consistent with expectations (Table 1 and Supplementary Table 1), but 
there were still some non-negligible differences compared to the 
tropics. Reforestation increased on land that was flatter, at lower 
elevation, and with lower agricultural revenue which correspond 
broadly to the results of determinants of reforestation in the tropics 
(Busch et al., 2019). The highest amount of reforestation was achieved 
on land with medium forest cover. Reforestation was significantly 
greater near cities, which was also the case in Latin America 
(Supplementary Table 1). Specifically, reforestation was significantly 
greater near cites in the Western Economic Belt 
(Supplementary Table  1). However, the reforestation was not 
significantly greater near the cities in the Central Economic Belt and 
the Eastern Economic Belt (Supplementary Table  1), which were 
consistent with the findings of determinants of reforestation in the 
tropics (Table  1). Reforestation was significantly greater at lower 
elevation in the Western Economic Belt, which was not confirmed in 
the Central Economic Belt and Eastern Economic Belt. Moreover, 
unlike in the tropics, reforestation was not greater within multiple 
protected area and strictly protected area. This may be due to the fact 
that large-scale reforestation programs were not on protected land as 
there was no need or a lack of space for extensive reforestation within 
protected areas.

In general, response of reforestation to carbon price was lower in 
China than in the tropics (Figure 1). Response of reforestation to 
carbon price in China was relatively close to that of the tropical 
regions of Asia and Latin America. Specifically, the response of 
reforestation to carbon price in the Eastern Economic Belt was close 
to that of the tropical regions of Africa. What’s more, the response of 
reforestation to carbon price was gradually decreasing from Eastern 
Economic Belt, Central Economic Belt to Western Economic Belt. 
According to Table 1, the price salience coefficient of reforestation on 
potential agricultural revenue was −0.00014 in China, which indicated 
reforestation was negatively related to potential agricultural revenue. 
This result is broadly consistent with the findings of determinants of 
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reforestation in Central Economic Belt, Eastern Economic Belt, Latin 
America, Africa and Asia (Table 2).

However, the coefficient of the price salience of potential 
agricultural revenue on reforestation was 0.00016  in the Western 
Economic Belt, which indicated reforestation was positively related to 
potential agricultural revenue. This result which confirmed the 
symbiosis of agriculture and reforestation in Western Economic Belt 
was broadly inconsistent with the findings of determinants of 
reforestation in Central Economic Belt, Eastern Economic Belt, and 
the tropics (Latin America, Africa and Asia).

According to Figure  2, the price salience of reforestation was 
greater in land with a higher proportion of private reforestation and 
output value of non-state enterprises. This is due to the fact that 
private reforestation is usually more responsive to price than 
government programs.

3.2 Cost potential of CO2 removal through 
reforestation

We projected 126.48 Mha of reforestation in 2020–2060 under a 
BAU scenario (Supplementary Figure 2). This projected reforestation 
corresponds to 29.59 GtCO2 removals from reforestation from 2020 
to 2060 (Supplementary Figure 3). The 93.82 Mha of reforestation 
from 2020 to 2050  in China was equal to 24.19% of the tropical 
reforestation (387.8 Mha) (Busch et al., 2019) over the same time 
period. Moreover, the 19.94 GtCO2 removals of reforestation from 
2020 to 2050 in China was equal to 19.45% of the tropical removals of 
reforestation (102.5 GtCO2) (Busch et  al., 2019) over the same 
time period.

A carbon price of US$20 tCO2
−1 would motivate land managers 

to enhance reforestation in China by 3.35 Mha (2.65%) to 129.83 Mha 

TABLE 1 Determinants of reforestation as % of cell in Poisson QMLE regressions.

Percent reforestation

Regression analysis 
(China)

Sensitivity analysis 
(China)

Regression (Busch et al., 2019) 
analysis (tropics)

Potential agricultural revenue ($/ha) −0.00014*** −0.00009** −0.00026***

(0.00003) (0.00004) (0.00001)

Percent forest cover 3.17170*** 2.96323*** 20.44372***

(0.07092) (0.0753) (0.28463)

(Percent forest cover)2 −76.62109***

(1.23827)

(Percent forest cover)3 115.30240***

(1.94543)

(Percent forest cover)4 −4.12397*** −3.96561*** −60.80833***

(0.09064) (0.09305) (0.99382)

Distance to city (km) −0.00047** 0.00014 −0.00001

(0.00021) (0.00027) (0.00002)

Slope (degree) −0.00973** −0.00701 −0.00784***

(0.00402) (0.00447) (0.00128)

Elevation (m) −0.00018*** −0.00003 −0.00011***

(0.00002) (0.00002) (0.00001)

Multiple protected area (percent of cell) 0.00135 −0.09139 0.19491***

(0.09531) (0.10193) (0.02884)

Strict protected area (percent of cell) −0.1842 −0.07921 0.10844***

(1.80723) (1.79513) (0.02545)

Western Economic Belt/Africa 0.42144*** 0.34044***

(0.03195) (0.01372)

Central Economic Belt/Asia 0.08129*** 0.25579***

(0.02949) (0.01544)

Pseudo-R2 0.45 0.29

Biome FE Yes Yes

Province FE Yes

Ecoregion FE Yes

Observations 179,484 179,484 1,594,113

Coefficients with standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.
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from 2020 to 2060 compared to a business-as-usual scenario 
(Figure  3). This corresponds to enhancing CO2 removals by 0.49 
GtCO2 (1.66%) to 30.08 GtCO2, from 2020 to 2060 (Figure 4). The 
increased removal (0.29 GtCO2) from reforestation at a carbon price 
incentive of US$20 tCO2

−1 from 2020 to 2050 is much lower than in 
the tropics (5.7 GtCO2 from 2020 to 2050) (Busch et  al., 2019). 
However, the removal of 20.24 GtCO2 from reforestation from 2020 
to 2050 is still equivalent to 18.69% of that in the tropics (Busch et al., 
2019) (108.3 GtCO2 in 2020–2050) at a price incentive of US$20 
tCO2

−1. A carbon price of US$50 tCO2
−1 would motivate land 

managers to enhance reforestation in China by 8.53 Mha (6.74%) to 
135.01 Mha from 2020 to 2060 compared to a business-as-usual 
scenario (Figure 3). This corresponds to enhancing CO2 removals by 
1.26 GtCO2 (4.26%) to 30.85 GtCO2, from 2020 to 2060 (Figure 4). 
The removal of 20.69 GtCO2 from reforestation from 2020–2050 is 
equivalent to 17.58% of that in the tropics (Busch et al., 2019) (117.7 
GtCO2 in 2020–2050) at a price incentive of US$50 tCO2

−1.
The low-cost abatement potential of reforestation enhanced from 

2020 to 2060 (Figure 5). Enhanced removals at US$20 tCO2
−1 are 

109.52% higher in 2030–2040, 213.95% higher in 2040–2050 and 
324.79% higher in 2050–2060 than in 2020–2030. Enhanced removals 

TABLE 2 Price salience coefficient of reforestation on potential agricultural revenue in China and the tropics.

Region Price salience of 
reforestation

Region Price salience of 
reforestation

China −0.00014*** Tropics −0.00026***

Eastern Economic Belt −0.00042*** Latin America (tropics) −0.00009***

Central Economic Belt −0.00030*** Africa (tropics) −0.00053***

Western Economic Belt 0.00016*** Asia (tropics) −0.00012***

*p < 0.1; **p < 0.05; ***p < 0.01.

FIGURE 2

Relationship between price response intensity of reforestation and private economy (The price salience intensity of reforestation is the absolute value 
of the price salience coefficient of reforestation; Output value of non-state enterprises refers to the proportion of output value of non-state enterprises 
in total industrial output; Proportion of private reforestation refers to the proportion of private reforestation in total reforestation area; *p  <  0.1, 
**p  <  0.05, ***p  <  0.01, NS., No significant difference).

FIGURE 1

Response of reforestation to carbon price in China and the tropics 
(EEB, Eastern Economic Belt; CEB, Central Economic Belt; WEB, 
Western Economic Belt; Africa, Tropical Africa; Asia, Tropical Asia; LA, 
Tropical Latin America; Response intensity of reforestation to carbon 
price is the absolute value of Response of reforestation to carbon 
price; The larger the response intensity of reforestation to carbon 
price, the larger the circle).
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at US$50 tCO2
−1 are 109.53% higher in 2030–2040, 213.93% higher in 

2040–2050 and 324.73% higher in 2050–2060 than in 2020–2030. This 
percentage increment is clearly greater than in the tropics (Busch 
et al., 2019) (101, 188%) at US$20 tCO2

−1.
Enhanced removals from reforestation are 0.01236 GtCO2/yr. and 

0.03149 GtCO2/yr at US$20 tCO2
−1 and US$50 tCO2

−1 carbon prices 
from 2020 to 2060  in China (Figure  5 and Table  3), respectively. 
Although our projection of low-cost enhanced removals for China is 

lower than for the United  States, Southeast Asia, South Asia, 
Sub-Saharan Africa, Brazil, and Canada, it is closer to that of Central 
America and higher than that of East Asia, Japan, Oceania, and Russia 
(Table 3; Austin et al., 2020). Enhanced removals from reforestation 
are 0.12875 GtCO2/yr and 0.33865 GtCO2/yr at US$ 20 tCO2

−1 and 
US$ 50 tCO2

−1 carbon prices from 2030 to 2060 in Brazil (Austin et al., 
2020), which ranks first in the world. In comparison to tropical results, 
our projection of low-cost enhanced removals for China is only lower 

FIGURE 3

Reforestation under carbon price incentive effect from 2020 to 2060.

FIGURE 4

Removals under carbon price incentive effect from 2020 to 2060.
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than for Brazil and Indonesia from 2020 to 2050, but is higher than 
the remaining 86 tropical countries such as India, Democratic 
Republic of the Congo, Mexico, and Australia (Busch et al., 2019). This 
result confirms that low-cost enhanced removals in China are a 
non-negligible part of global climate mitigation efforts in the future. 
Notably, total carbon dioxide removals through reforestation in China 
is 20.237 GtCO2 from 2020 to 2050 (24.92 GtCO2 from 2030 to 2060) 
at US$20 tCO2

−1 carbon prices, which is close to and lower than the 
low-cost dioxide removal potential through reforestation of Brazil 

(Busch et al., 2019) (24.55 GtCO2 at US$20 tCO2
−1 from 2020 to 2050; 

Busch et al., 2019). This result confirms that total carbon dioxide 
removal potential from reforestation in China will be slightly inferior 
to tropical Brazil. China is likely to be one of the global leaders in 
mitigating climate through reforestation in the next 40 years, largely 
due to previous large-scale reforestation programmes that will 
continue to remove large amounts of carbon dioxide in the future, 
even if carbon prices are equal to 0 (removals from reforestation 
under BAU).

FIGURE 5

MAC curves about reforestation. The potential CO2 abatement from reforestation is shown for decades from 2020 to 2060. (A) MAC curves about 
reforestation from 2020 to 2060 in China. (B) MAC curves about reforestation from 2020 to 2050 in the tropics (Busch et al., 2019).
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3.3 Regional differences in low-cost 
abatement potential of reforestation

The Western Economic Belt (1.2767 GtCO2) accounts for 42.44% 
of low-cost removals from 2020 to 2060 at US$20 tCO2

−1 (Table 4), 
followed closely by Central Economic Belt (0.9495 GtCO2, 31.56%) 
and Eastern Economic Belt (0.7823 GtCO2, 26.00%). The Western 
Economic Belt (1.3098 GtCO2) comprised 42.46% of low-cost CO2 
removals from 2020 to 2060 at US$50 tCO2

−1, followed closely by 
Central Economic Belt (0.9717 GtCO2, 31.50%) and Eastern Economic 
Belt (0.8035 GtCO2, 26.04%). Western Economic Belt also comprised 
43.32 and 43.21% of low-cost enhanced removals from reforestation 
respectively, followed by Central Economic Belt (29.15 and 29.07% 

respectively) and Eastern Economic Belt (27.73 and 27.72% 
respectively) at US$20 tCO2

−1 and at US$50 tCO2
−1 (Table 4).

The cost potential of enhanced CO2 removal varied significantly 
across provinces (Figures 6, 7). The top 10 provinces for enhanced 
CO2 removals (representing 73.19 and 73.22% of total removals) from 
reforestation between 2020 and 2060 at US$20 tCO2

−1 and US$50 
tCO2

−1 were Yunnan, Sichuan, Guangxi, Guizhou, Hunan, Guangdong, 
Heilongjiang, Jiangxi, Fujian, Zhejiang (Figures 6, 7).

Potential agricultural revenue and percent forest cover showed 
significant effects on reforestation in the robustness test, which 
coincided with the results of the regression analysis, although distance 
to city, slope, elevation, multiple protected area, and strict protected 
area did not significantly affect reforestation (Table 1).

TABLE 3 Increased removals from reforestation in major countries and regions at US$20  tCO2
−1 and US$50  tCO2

−1 from 2020 to 2060.

Enhanced removals (2030–
2060; Austin et al., 2020)

Enhanced removals (2020–
2050; Busch et al., 2019)

Carbon price 
(tCO2

−1)
$20 $50 Carbon price (tCO2

−1) $20 $50

Africa and Middle East 0.00670 0.00997 Brazil (tropical only) 0.04204 0.11118

Brazil 0.12875 0.33865

Democratic Republic of the 

Congo 0.00904 0.02367

Canada 0.05333 0.12336 Indonesia 0.01157 0.03053

Central America 0.01552 0.03416 Angola 0.00670 0.01764

East Asia 0.00195 0.00520 Bolivia 0.00422 0.01118

European Union Annex I 0.00752 0.01608 Colombia 0.00652 0.01728

European Union Non-Annex I 0.01591 0.01906 Mexico (tropical only) 0.00671 0.01799

Japan 0.00093 0.00200 Venezuela 0.00406 0.01075

Oceania 0.00324 0.01012 Tanzania 0.00621 0.01643

Rest of South America* 0.04021 0 Zambia 0.00441 0.01168

Russia 0.01169 0.02044 Mozambique 0.00531 0.01398

Southeast Asia 0.10545 0.14362 India (tropical only) 0.00637 0.01716

South Asia 0.02971 0.05955 Myanmar 0.00442 0.01171

Sub-Saharan Africa 0.03736 0.08782 Thailand 0.00495 0.01320

United States 0.07853 0.16691 Ethiopia 0.00410 0.01089

China 0.01496 0.03811 China** (2020–2050) 0.00980 0.02497

China** (2030–2060) 0.01491 0.03798 China** (2020–2060) 0.01236 0.03149

Sources: Austin et al. (2020) and Busch et al. (2019). (Unit: GtCO2/yr). 
*Rest of South America excludes Brazil. **Increased removals (average value of the period) from reforestation in China derived from this study.

TABLE 4 Enhanced removals and total removals from reforestation at US$20/50  tCO2
−1 from 2020 to 2060.

Region Total removals Total removals Enhanced removals Enhanced removals

Carbon price (tCO2
−1) 20$ 50$ 20$ 50$

Eastern Economic Belt (GtCO2) 7.823 (5.237) 8.035 (5.363) 0.137 (0.081) 0.349 (0.125)

Western Economic Belt (GtCO2) 12.767 (8.635) 13.098 (8.832) 0.214 (0.127) 0.544 (0.197)

Central Economic Belt (GtCO2) 9.495 (6.364) 9.717 (6.497) 0.144 (0.086) 0.366 (0.133)

China (GtCO2) 30.085 (20.237) 30.850 (20.692) 0.494 (0.294) 1.259 (0.749)

Enhanced removals and total removals from reforestation from 2020 to 2050 are in brackets.
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3.4 Calibration and validation

A relative comparison between our estimates and those in 
reference (Busch et al., 2019) was used for calibration, according to the 
methodology of reference (Lu et al., 2022). Our calibration results 

(Figure  8) show that carbon removals (InterQuartile Range: 
0.00 ~ 135.77 tCO2 ha−1 and 0.00 ~ 135.74 tCO2 ha−1, respectively, in 
US$20 tCO2

−1 and US$50 tCO2
−1) from reforestation at carbon prices 

of US$20 tCO2
−1 and US$50 tCO2

−1 are close to those (InterQuartile 
Range:16.89 ~ 120.82 tCO2 ha−1 and 32.89 ~ 123.10 tCO2 ha−1, 
respectively, in US$20 tCO2

−1 and US$50 tCO2
−1) in Busch et  al. 

(2019). Notably, the range (20.45 ~ 85.18 tCO2 ha−1) of our estimated 
Mean ± SD is slightly lower than that (40.90 ~ 91.89 tCO2 ha−1) of 
reference at carbon prices of US$20 tCO2

−1. Moreover, the range 
(20.65 ~ 86.58 tCO2 ha−1) of our estimated Mean ± SD is also slightly 
lower than that (47.46 ~ 101.44 tCO2 ha−1) of reference (Busch et al., 
2019) at carbon prices of US$50 tCO2

−1. This may be due to the fact 
that unit carbon accumulation rates in Hainan are generally lower 
than the average values of carbon accumulation in typical tropical 
rainforests (Amazon Basin, Congo, and Southeast Asia), given the 
marginal location of the tropical climate (Busch et al., 2019). The 
difference between the Chinese secondary forest growth samples and 
the tropical secondary forest growth samples database caused this bias 
(Anderson-Teixeira et al., 2021). Moreover, the difference in response 
of reforestation to carbon prices on state-owned land and privately 
owned land is also an important cause of this bias.

(1) Cross-spatial validation of carbon removals. We  validated 
carbon removal using Kling-Gupta Efficiency (KGE) based on carbon 
removal through reforestation estimated by land-use data, given that 
KGE addresses several perceived shortcomings in the Nash-Sutcliffe 
efficiency (NSE) (Knoben et al., 2019). Moreover, given the lack of 
forest cover data for 2010–2020, our estimates were validated by 
carbon removal estimated by 2010–2020 land use data. According to 
Table  5 and Supplementary Table  4, the value of KGE about 

FIGURE 6

Maps of enhanced removals from reforestation at a carbon price of 
US$20  tCO2

−1 from 2020 to 2060 (Enhanced removals of Taiwan, 
Hong Kong and Macao were calculated by the national average of 
some variables).

FIGURE 7

Potential for low-cost CO2 removal through reforestation in different provinces (The blue spectrum is for the Eastern Economic Belt; the orange 
spectrum is for the Central Economic Belt; and the gray spectrum is for the Western Economic Belt).
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cross-spatial carbon removals through reforestation in 2010–2020 is 
0.43. (2) Cross-temporal validation of carbon removals. The value of 
KGE is 0.67 and 0.080, respectively, in 2035 and 2055 (Table 6). These 
results confirm that this study is a “satisfactory” model simulation 
(Knoben et al., 2019; Vergopolan et al., 2021; Koppa et al., 2022).

4 Discussion

4.1 Carbon dioxide removal potential 
through low-cost reforestation in China in 
the future should not be ignored globally

Among the global actions and plans for climate mitigation in the 
past decades, the tropical rainforests of Brazil, Indonesia, and 
Democratic Republic of the Congo have attracted lots of global 
attention due to their vast forests and carbon pools (Gullison et al., 
2007; Murdiyarso et al., 2015; Rochedo et al., 2018; Pennisi, 2020; Staal 
et al., 2020; Heinrich et al., 2021; Koh et al., 2021; Masuda et al., 2021; 
Steckel et  al., 2021; White et  al., 2021; Koch and Kaplan, 2022). 
However, our projection of low-cost enhanced removals (0.01236 

GtCO2/yr. at US$ 20tCO2
−1, 0.03149 GtCO2/yr. at US$ 50tCO2

−1) for 
China in the future is higher than all tropical countries except Brazil 
and Indonesia, such as Democratic Republic of the Congo, India, 
Mexico (Busch et al., 2019; Austin et al., 2020). Our projection of 
low-cost removals through reforestation in China from 2020 to 2060 
is 30.08 GtCO2 at US$20 tCO2

−1 carbon prices, which is 1.23 times that 
of Brazil from 2020 to 2050 (24.55 GtCO2 at US$20 tCO2

−1; Busch 
et al., 2019).

Previous studies speculated that reforestation projects on public 
land (China and India), might not be as responsive to price signals 
(Busch et al., 2019). That government-led reforestation policies do not 
usually respond to cost/price signals is accepted by lots of Chinese 
researchers and mainstream views (Feng et al., 2021), which constrains 
the replication of cost/price studies in China. They believe that 
reforestation will not respond to price incentives under land 
ownership by the state and a strict land regime in China (Wang et al., 
2018; Wu et al., 2018; Yang et al., 2021). However, the reality is not 
entirely so. First, government-led large-scale reforestation projects are 
the main driver for enhancing forest cover. Despite the inherently 
policy-driven nature of these reforestation projects (the Natural Forest 
Conservation Program, Three-North Shelter Forest Program, National 

FIGURE 8

Calibration results of carbon removals through reforestation at carbon prices of US$20  tCO2
−1 and US$50  tCO2

−1 from 2020 to 2050 in Hainan 
province. (A) Carbon removals from reforestation at carbon prices of US$20  tCO2

−1. (B) Carbon removals from reforestation at carbon prices of 
US$50  tCO2

−1.

TABLE 5 Validation results of Kling-Gupta Efficiency (KGE) about cross-spatial carbon removals through reforestation in 2010–2020.

Observations KGE Carbon removal through 
reforestation (tree cover)

Carbon removal through 
reforestation (land-use)

Mean Standard Deviation Mean Standard Deviation

179,484 0.43 18604.99 16812.05 17039.74 23051.56

TABLE 6 Validation results of Kling-Gupta Efficiency (KGE) about cross-period carbon removals at carbon prices of US$20  tCO2
−1 and US$50  tCO2

−1 in 
China.

Year KGE Observations

2035 0.67 4

2055 0.08 4

Validation reference from the global study by Austin et al. (2020).
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Key Ecological Function Area Program, etc.), limited government 
investment forced project managers to incorporate cost considerations. 
The government is less willing to undertake reforestation in regions 
with high potential agricultural income, due to higher costs of arable 
land acquisition and food security (Cao, 2011; Yan, 2019; Tong et al., 
2020; Winkler et al., 2021). Moreover, land management rights are 
possessed by enterprises, farmers, foresters, farms, and forest farms, 
who are the direct managers of the land, although all land is owned by 
the state in China (Chow, 1997; Feng et al., 2021). We have found that 
these enterprises, farmers, foresters, farms, and forest farms are 
responsive to price signals (or cost compensation). Second, 
commercial timber plantations responding to the demand for wood 
are also an important driver of forest cover change. Due to the natural 
forest conservation policy, commercial timber plantations have 
extensively cultivated fast-growing species such as poplar and 
eucalyptus to generate profits and fulfill the timber demand. Third, the 
Sloping Land Conversion Program is also a significant driver of forest 
cover change. As this program provides subsidies for converting 
farmland into forests, many farmers opt for reforestation on their land 
to reap greater economic benefits.

The cost potential of carbon dioxide removal through reforestation 
in China has been overlooked in the past. This study not only confirms 
that MAC curves about carbon dioxide removal can also be applied to 
China as well, but that China has a huge cost potential to CO2 removal 
through reforestation. In fact, the cost potential of CO2 removal in 
China may not be  limited to this. The large-scale reforestation 
programs implemented in the past 30 years will continue to remove 
large amounts of carbon dioxide in the future, even if the carbon price 
is equal to 0 (removals through reforestation under BAU), which 
offers significant potential for zero-cost CO2 removal through 
reforestation. As per capita income crosses the inflection point of the 
Environment Kuznets Curve, the structure of economic growth and 
natural environmental needs have changed significantly in China 
(Wang et al., 2019; Yang et al., 2020). The idea of protecting nature has 
been widely accepted in China (O'Meara, 2021). These trends will 
broaden the cost potential of carbon dioxide removal through 
reforestation in China.

4.2 The cost potential of carbon dioxide 
removal through reforestation will 
contribute to China’s carbon neutrality in 
2060

This study estimated the spatial extent and the potential of 
low-cost CO2 removal through China’s reforestation. We estimate that 
reforestation could remove 0.9848, and 1.0158 GtCO2 yr−1 at US$20 
tCO2

−1, and US$50 tCO2
−1 in China from 2050 to 2060, respectively. 

These cost potentials are separately equal to 9.56 and 9.86% of CO2 
emissions of China (10.3 GtCO2 yr−1) in 2019 (Jiang et al., 2020; Shan 
et  al., 2020; Yang et  al., 2020; Liu et  al., 2022; Tang et  al., 2022). 
Moreover, the potential for removals through reforestation (1.0 GtCO2 
yr−1 from 2050 to 2060) at US$50 tCO2 are separately equal to 67.72 
and 35.03% of CO2 emissions of China under the 1.5°C (1.5 GtCO2 
yr−1) and 2°C (2.9 GtCO2 yr−1) goal in 2050 (group, P. s. r. w., 2020; 
Duan et al., 2021).

Our estimates indicate that reforestation has greater low-cost 
abatement potential in 2060 relative to direct CO2 capture & storage 

(0.03–0.3 GtCO2 yr−1 at US$ 390–415 tCO2
−1) and bioenergy with 

carbon capture and storage (BECCS) (0.3–0.7 GtCO2 yr−1 at US$ 
390–415 tCO2

−1) (Zhang et al., 2022). Although removals (1.0158 
GtCO2 yr−1) through reforestation at US$ 50 tCO2

−1 are equivalent to 
conventional fossil fuel carbon capture and storage (0.9–1.5 GtCO2 
yr−1) at US$ 390–415 tCO2

−1 in 2060 (Zhang et al., 2022), the cost of 
removal through reforestation is much smaller than conventional 
fossil fuel carbon and storage.

4.3 Price salience of reforestation across 
China, and uncertain implications

Regions vary in price salience of reforestation for mitigating climate 
change. Price salience intensity of reforestation in China (0.00014) was 
lower than in the tropics (0.00026). The price salience of reforestation 
to carbon price is gradually decreasing from the Eastern Economic Belt, 
Central Economic Belt to the Western Economic Belt. The Eastern 
Economic Belt is the region with the most developed economy and the 
most active private economy in China. A large number of free trade 
zones, special administrative zones, special economic zones, and coastal 
open cities gather in the Eastern Economic Belt (Chen et al., 2018). The 
percentage of the output value of non-state enterprises is 79.17, 64.87, 
and 52.73%, respectively, in the Eastern Economic Belt, Central 
Economic Belt, and Western Economic Belt. Moreover, the percentage 
of private reforestation areas is 66.33, 49.88, and 54.95%, respectively, in 
the Eastern Economic Belt, Central Economic Belt, and Western 
Economic Belt. In fact, in the central and western regions, the state 
economy is extremely important, while the private sector is often 
weaker than that of the Eastern Economic Belt (Li et al., 2018). The 
active degree of the private economy is an important reason for the 
evolution of reforestation price salience.

The price salience coefficient of reforestation on potential 
agricultural revenue is 0.00016 in the Western Economic Belt, which 
is broadly inconsistent with the findings of determinants of 
reforestation in tropical (Latin America, Africa, and Asia), Central 
Economic Belt, and Eastern Economic Belt (Busch et al., 2019). An 
important reason for this result is the difference in natural conditions. 
The default non-agricultural ecological land cover in most of the 
tropics, Central Economic Belt, and Eastern Economic Belt is forest. 
In wetter areas such as the tropics, Central Economic Belt, and Eastern 
Economic Belt, where natural conditions are adequate for forestry and 
agriculture, the expected income becomes the key to the choice 
between forest or agriculture. Thus, there is a trade-off between 
agriculture and reforestation on the same land in the Eastern 
Economic Belt, Central Economic Belt, and the tropics. However, 
most of the Western Economic Belt is located in ecologically fragile 
areas with very low precipitation and temperature and over 3,000 
meters in altitude (Herzschuh et al., 2019; Wu et al., 2020). This fragile 
natural condition imposes additional constraints on agriculture and 
forests. That is, regions, where natural conditions cannot satisfy 
forests, are usually difficult to satisfy agriculture. This constraint forces 
a symbiosis between agriculture and vegetation in ecologically fragile 
areas (Ran et al., 2013). Due to the fragility of ecosystems, sustainable 
agriculture depends on stable ecosystems covered by vegetation. 
Revegetation resulting from carbon price incentives will reduce wind 
and sand, soil erosion, and vegetation degradation, and enhance 
ecosystem stability (Wu et  al., 2020), which will simultaneously 
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enhance the sustainability of agriculture and ultimately farm income 
(Wen et al., 2019). However, the choice of vegetation and restoration 
methods (plantation or natural regrowth) is still uncertain in 
ecologically fragile areas, which is important for both carbon dioxide 
removal and agriculture.

Notably, the price salience of reforestation may face potential 
challenges and constraints that cannot be  fully anticipated. Some 
studies around the world (White et al., 2018; Grainger, 2020) pointed 
out that not owning land may inhibit long-term investment such as 
reforestation, unless the carbon compensation to offset the 
reforestation investment is received in the period of the management 
right. Notably, the term of private contracts for forests across China is 
30–70 years (Xu and Hyde, 2019). In addition to all the other potential 
challenges of long-term investment (economic, financial, policy, etc.) 
that private operators need to face, China’s forest operators will 
be exposed to the risk of international carbon price fluctuations in the 
future, which may not be  easily coped with by their domestic 
operational experience from the past. These risks will need to 
be estimated and quantified in future studies. Carbon compensation 
payments (purchasing forest-based carbon offsets) have additionality 
in Brazil (Sonter et al., 2015), Congo (Hubau et al., 2020), Indonesia 
(Steckel et  al., 2021), etc., as these countries face substantial 
deforestation and forest degradation. The additionality makes carbon 
compensation payments attractive. However, carbon compensation 
payments may not have significant additionality in China, due to the 
widespread presence of government-led large-scale afforestation 
(Zhang et al., 2000; Wang et al., 2020; Winkler et al., 2021).

Despite our efforts to incorporate major factors (Griscom et al., 
1794; Busch et al., 2019) (biome type, elevation, slope, protected areas, 
forest age, price salience, etc.) influencing land use in the estimates, it’s 
important to note that personal preferences, religions, cultures, 
political instability, economic uncertainties, and other socioeconomic 
factors, which are challenging to quantify, may also play a role in 
affecting land-use change (Lu et al., 2022). These factors may introduce 
additional uncertainty into our estimates. Nonetheless, with carbon 
neutrality being identified as a long-term national strategy (Mallapaty, 
2020), carbon removal through forests has become one of the goals of 
forest management in state forests (Tong et al., 2020). The spatial 
extent and potential for low-cost CO2 removal through China’s 
reforestation can help operators (state or private) prioritize the most 
cost-effective actions.

5 Conclusion

Our findings provide useful insights for research and policy in four 
main ways. First, our results find extensive cost potential for CO2 
removal through afforestation in China which fills the research gap on 
the cost potential of carbon removal in China and sheds light on the 
important role of China’s afforestation in future global climate 
mitigation. Second, our results find that the stereotype that reforestation 
will not respond to price incentives or costs in China should be changed. 
This study not only confirms that MAC curves about carbon dioxide 
removal through reforestation apply to China as well, but also the 
significant response of reforestation to cost, which fills the research gap. 
Third, our results reveal priority areas for low-cost carbon removal 
through reforestation in China for the first time and confirm the 
significant spatial heterogeneity in the cost potential of carbon dioxide 

removal. The price salience of reforestation for mitigating climate 
change varies across the Western Economic Belt, Eastern Economic 
Belt, and Central Economic Belt. Targeting reforestation policies to 
regions with the greatest potential for low-cost CO2 removal would 
significantly reduce the cost burden. This could form a basis for 
ambitious national targets of achieving carbon neutrality by 2060 in 
China. Fourth, the potential for carbon dioxide removal through 
reforestation is constrained by socio-economic factors such as the 
proportion of private reforestation and active degree of private economy. 
The marketization process of the forest industry facilitates the 
enhancement of cost potential for CO2 removal through reforestation. 
The challenges to China’s commitment to the world to achieve carbon 
neutrality before 2060 are some of the greatest faced by China. If 
reforestation policies are well-planned and implemented, they can make 
substantial headway toward addressing them.
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